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A theoretical discussion is given of the motion of a fluid contained in a tube form- 
ing a closed loop that is heated from below and cooled from above. The fluid is 
assumed to have uniform temperature over each cross-section, and the heat 
transfer is assumed proportional to the difference between the local temperatures 
of the fluid and the tube. The latter temperature is prescribed. The system has 
one steady solution with warm fluid rising in one branch and cold fluid sinking in 
the other. This solution may, however, become unstable in an oscillatory manner. 
A weak instability takes the form of pulsations, the motion being always of one 
sign, while a strong instability takes the form of oscillations with zero mean 
motion. These oscillations are irregular and do not repeat themselves even over 
very long times. 

These unstable motions are associated with thermal anomalies in the fluid that 
are advected materially around the loop. The anomalies amplify through the 
correlated variations in flow rate. A warm pocket of fluid creates maximum flow 
rate going through the upper part and minimum flow rate going through the lower 
part of the loop. Accordingly it passes quicker through the heat sink than through 
the heat source, and the latter becomes more effective. Similarly, the heat sink 
acts more effectively on a cold pocket of Auid. 

The curve of neutral stability is worked out as a function of the two para- 
meters of the problem, a non-dimensional gravity and a non-dimensional friction 
coefficient. The instability has also been studied by direct numerical time integra- 
tion of the model equations. 

It is suggested that the mechanism of instability found for this model operates 
also in more complicated systems, and can explain the pulsative type of motions 
observed recently in certain convection experiments. 

1. Introduction 
The problem of general thermal convection (fluid motion set up by heating and 

cooling processes) is so far only incompletely understood. Most attention has been 
paid to the case of BBnard convection (convection between two horizontal 
boundaries kept at different temperatures). The stability problem and the range 
of steady laminar convection is relatively well explored, while less is known about 
the regimes of unsteady laminar convection and turbulent convection occurring 
at  high Rayleigh numbers. Only a few studies have been made of convection 
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created by more complicated distributions of heat sources and sinks, as occur in 
many geophysical applications. 

Restricting the attention to convection in a finite region, one finds that any 
fluid particle carries out a periodic or quasi-periodic motion between the top and 
the bottom, being heated a t  the lower portion and cooled at  the upper portion of 
its orbit. It is suggested that insight into the mechanism of such a convection can 
be obtained by considering a very simple model: a one-dimensional fluid moving 
along a given closed loop and subjected to given heat sources and sinks along its 
path. The model can be materialized as follows: take a narrow tube of uniform 
cross-section and form it into a closed loop. The tube is filled with fluid that is kept 
well mixed over the cross-section (the characteristic time for the mixing should be 
small compared with the time required for the fluid to be advected an appreciable 
distance along the loop). If the fluid is turbulent the transverse mixing is usually 
strong enough but if the fluid is laminar one may have to introduce an artificial 
‘diffusor ’ in the tube. The tube walls are kept at  a prescribed temperature that 
varies along the loop. The heat transfer to the fluid can be assumed proportional 
to the difference between the local temperature of the wall and the fluid.t 

The fluid motion will be driven by the buoyancy force; it will also be retarded 
by a frictional force. One can with good approximation introduce a frictional 
force that is a function of the instantaneous flow rate; this is justified by the 
assumption that momentum like the heat is diffused over the cross-section in a 
time short compared with the ‘ advection time ’. 

The model described will have one solution of steady flow, whatever arrange- 
ments of heat sources and sinksis made. This can be proved as follows. The buoy- 
ancy force directed along the tube, integrated around the loop, is 

B = Agp,a$Tdz, 

where A is the cross-sectional area, g the acceleration of gravity,p, a meandensity, 
LX the thermal expansion coefficient, T the temperature and z a, vertical co- 
ordinate. In  a steady state, this force is balanced by a tangential friction force F ,  
integrated along the tube. By assumption, F is a function of the flow rate q,  F(q).  
F(q) obviously increases with q,  for any normal friction law. A typical curve 
F = F(q)  is drawn in figure 1 a. For any value of q one may further compute the 
temperature distribution in the fluid using the assumed heating law and from 
this obtain B(q). The relevant equation is (p/A) (8Tlas) = k(T,(s) - T), where s is 
a co-ordinate along the tube, T,(s) the wall temperature and k a constant. It is 
easy to show, and it is physically obvious, that when q becomes large the varia- 
tions in T along the tube become small. Further, when q = 0 one has T = To and 
B is non-zero (except in the case when $Todz  = 0, but then zero motion is one 
solution). Obviously the two curves must cut at  least in one point; this represents 
a possible steady solution. The present proof assumes that the Boussinesq 
approximation is valid, but it seems possible to generalize this. 

t One may feel that the fluid should take on exactly the wall temperature if the trans- 
verse mixing is instantaneous. However, in any experiment one finds a thermal resistance 
in a thin boundary layer at  the wall, or in the wall itself. The heat flux can be assumed 
proportional to the temperature drop over this region. The inner core of the fluid can still 
be considered well mixed. 
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Looking on the steady (non-zero) convection it seems likely, at the first glance, 
that i t  is stable. If the flow rate should increase above its balanced value, 
the buoyancy forces would decrease and friction would increase, thereby counter- 
acting the change. In  the case where zero motion is a steady solution, one can 
obviously get instability. It is easy to show that, in this case, instability occurs 

f 

(4 (b) 
FIGURE 1. Variation of total friction P and total buoyancy B with flow rate; 

(a)  no equilibrium, (b )  one unstable equilibrium. (Schematic picture.) 

when B'(q) is larger than P'(q), at q = 0. There exists, however, another steady 
solution (in fact, two solutions as seen from figure 1 b). It looks, therefore, as if the 
system would always end up in a stable situation. Some observations of a labor- 
atory tube model suggested, however, that all steady solutions may eventually 
become unstable when the buoyancy force is made large. To test this idea some 
numerical experiments were run on the computer General Electric 225 at the 
Woods Hole Oceanographic Institution. The model studied was the simplest 
possible: a loop with two long vertical branches and a point heat source applied 
at  the lower end, a point heat sink at  the upper end. The computations demon- 
strated that the steady motion becomes unstable, and growing pulsative 
motions start when a non-dimensional gravity parameter is large enough, for a 
certain range of a frictional parameter. The instability was later demonstrated 
analytically; it was found to be associated with infinitesimal perturbations. The 
explanation in physical terms could also be given. 

Instabilities of pulsative type have been reported for the BBnard convection 
at  Rayleigh numbers around lo6 by Thomas Rossby and for convection be- 
tween rotating cylinders by Howard R. Snyder (private communications). In 
studies of theoretical models of the oceanic circulation driven by a non-uniform 
horizontal heating, there have also been reports on pulsative motions (Kirk 
Bryan, private communication), but these cases seem more complex and there is 
probably some more mechanism of instability involved. A further theoretical 
study of the pulsative instabilities for a real two- or three-dimensional fluid 
model would certainly be of interest and clarify the phenomenon further. 

2. Derivation of the Model Equations 
Consider the fluid in a portion of a tube with uniform cross-section area A and 

length L (figure 2). The fluid is driven by the pressure difference between the end- 
points and by a buoyancy force, and is retarded by a frictional force. The following 
assumptions are made. 

2-2 
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(i) The Boussinesq approximation is valid. 
(ii) The tangential friction force on the fluid is proportional to the instantaneous 

(iii) The temperature of the fluid is uniform over each cross-section. 
(iv) The heat flux between the tube and the fluid is proportional to thedifference 

between the wall temperature T, and the fluid temperature T. To is prescribed 
along the tube. 

flow rate q. 

!i 
FIGURE 2. Tube segment. 

The equations of motion for the fluid are 

where v is the fluid velocity, po a standard density, p the actual density, g the 
acceleration of gravity, and F the friction force. The density and temperature 
have a relation of the form 

p = -p,aT+constant. (3) 

Taking the tangential component of (l), one has 

p,(dv/dt), = - (aP/as) - pg cos 4 + E7 
and, integrating over the fluid volume, 

Po at a l / v , d A d s  = -AZ(p’-p)-g 

where p’ -p is the pressure difference between the end-points, and q5 is the angle 
between the tube and the vertical. 

We introduce the flow rate q = I v,dA, which is constant along the tube in view 
of ( 2 ) ,  and replace p by T using (3). Under the assumptions (ii) and (iii) the above 
equation can be written 

poLq = -AZ(p‘-p)+Agpoa Tdzfconst. dz-p,LRq, (4) 1 s 
where R is a frictional coefficient. Use has been made of the relation cos q5 ds = dx 
where dx is a vertical increment. 

A second equation is given by the heat flux condition 

dT aT q a T  
- = -+-- = Ic{To(~)-T}. 
dt at A as 
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We note that R and k both have the dimension of time -1; these times charac- 

For a closed tube, equation (4) takes on the simple form 
terize the viscous and thermal dissipation, respectively. 

@ = z g a  " I  T d z - R p  (4a) 

since p' = p and f dz = 0. 
In  the following we are going to restrict ourselves to the simple model shown in 

figure 3. The tube consists of two vertical branches of lengths &L with short con- 
nexions a t  the top and the bottom. The tubes are assumed insulated (k = 0)  
everywhere except at  the top and bottom, where over short distances s the tem- 
perature of the wall is kept a t  -AT and +AT, respectively. We consider actually 
the limiting case when As+O while k+m, in such a way that the heat flux 
remains finite (point source and point sink). 

FIGURE 3. The simplified 
model. 

- A  

FIGURE 4. Co-ordinate along the tube, 
and antisymmetry condition. 

The tube is symmetric with respect to the vertical. It is easy to see that by 
starting from a temperature distribution that is antisymmetric with respect to the 
centre of the loop, such a state of antisymmetry is always retained, see figure 4. 
One can, in fact, prove (not shown here) that starting from any temperature 
distribution the antisymmetric state is approached asymptotically at  least in the 
case when q has one sign, so that each part of the fluid passes repeatedly through 
the heat source and heat sink. 

It will, therefore, be natural to restrict the attention to this case. In the equa- 
tions we let s vary in the interval from 0 to $L, and use the antisymmetry to 
include contributions from the interval gL to L. The equation of motion is 

q = -  . ' y  T ds - Rq. 

The temperature of the fluid coming out from the heat source or heat sink is 
determined by the temperature of the ingoing fluid and the flow rate only. It is 
easily seen that, if a fluid particle passes the heat source during the short time At,  
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the difference in temperature between the outgoing and incoming fluid is, to the 
first order, Tout - Tin = (AT - Tin) (1 - eckAt) 

= (AT - Tin) (1 - e-kaAs/lql). (7) 

For small flow rates Tout = AT; for large flow rates Taut = Tin. For the heat sink 
the same formula holds with AT replaced by - AT. 

For the computation in the range 0 < s < &L we need to know Tin at the heat 
source, when q > 0, and at  the heat sink, when q < 0. By the antisymmetry we 
have in the first case Tin = - q=&(L-As), and in the second case Tin = - T,+,. In  
the limit when As+ 0 we denote these values simply - q=hL and - T,=,, respec- 
tively. 

Finally, the equations are non-dimensionalized by the transformation 

t ,  q+kAAs .q ,  T-+AT.T, t + ~ 

L L 
2 2k As' 

s+ -. s, 

and take then the form 

(8Tja.t) +q(aT/as) = 0, 

T,=, + T,=, = (1 + T,=,) (1 - e-l'*) for q > 0, 

T,=,+T,=,=(-l+T,=,)(l-el~*) for q < O .  

The parameters of the problem are 

a = gaATL/2(kh~)~ ,  e = RL12kAs. 

3. Steady motion 
We assume that q > 0 ;  hence the motion is upward in the branch 0 < s < 1. 
In  steady state the temperature in this branch is uniform ; its value is denoted 

by T. The other branch has the temperature - T. Denoting the flow rate q,  (9) and 
(1 1 a)  take on the form eq = UP, 

2T = (1 + T )  (1 - e-lj?). 
Eliminating ? one gets 

It is easily seen that (15) has a single, positive solution. Values ij and T are given 
in table 1 for some different values of uje. 

Obviously the temperature becomes more uniform along the loop as the flow 
rate increases. For very small flow rates the temperature of the rising and sinking 
motion approaches the temperatures of the heat source and heat sink, respec- 
tively. The case of no motion is degenerate, because of the assumption of insulated 
branches. Any temperature distribution that satisfies the condition $ Tdx = 0 
and that takes on the temperatures + 1 and - 1 a t  the heat source and heat sink 
will give an equilibrium solution. It is found that this equilibrium solution is 
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unstable, at  least when the initial temperatures lie between - 1 and 1. Physically, 
this is seen by making a small displacement of the fluid from the equilibrium, 
say, in the positive direction. The fluid coming out from the heat source (or the 
heat sink) must necessarily have a higher (lower)] temperature than the fluid 
that enters, and a positive buoyancy is created. When the branches are insulated 
this added buoyancy is conserved and the system will accelerate in the positive 
direction. 

TABLE 1. 

- 
a le  q T 

0.100 0.100 1.000 
0.500 0.417 0.834 
1.000 0.648 0.648 
2.000 0.958 0.479 

10~000 2.218 0.222 

Values of non-dimensional flow rate and 
temperature in steady motion 

4. Stability of steady motion 
We consider small deviations from the steady state, putting 

q = i j+q’,  T = T+T’, (16) 

where q‘ is a function oft, and T‘ is a function of t  and s. ij and 
positive. 

are assumed 

The linearized forms of (9) and ( 10) are 

q’ + Eq’ = a s: T’ds, 
(17) 

while the boundary condition (1  1 a )  takes on the form 

Ti=,, + mTL==, + nq’ = 0, 

where 

using the relation (14) between and F .  
Introducing a time factor by putting 

q’ = q*eTt,  T’ = P ( s ) e r i ,  

the equations for Q and ?(s) are 
1 

0 
( r + s )  4 = a /  Pas, 

T P +  q(dP/ds) = 0, 

P(0)  + m P ( l )  +ng = 0. 

with the boundary condition 

(24) 
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The solutions for $and $ are of the form 

9 = c exp ( - rs/q), 

and inserting these in the boundary condition (24) gives the characteristic equa- 

tion naq 
1 +mexp( - r /? j )  + ~ (1 - exp( - -r /q)}  = 0. 

r(r + e) 

FIGURE 5 .  The function 
i l(T) = ( l -T-z) ln( l -T) / ( l+T) .  

FIGURE 6. Tho function - u cot +w. 

For r real and positive, all the terms in the left-hand side of (26) are positive; 
hence no unstable solutions with exponential growth exist. There may still 
exist solutions that are unstable in an oscillatory way. The neutral oscillations 
are obtained by putting r = iw .  In this case, after introducing the new parameters 

a" = na/g, .? = e/q,  0 = W I G ,  (27) 

the characteristic equation (26) can be written 

Separating in real and imaginary parts, expressing a" in terms of T and 2: only,? 
and inserting m = (1 - T ) / (  1 + T ) ,  the following two equations result: 

0 2 + ( E - & 4 ) 2  = (z IAY, (29) 

2. = - ( l / qoco tgB,  (30) 

where 

f Note tthe relations 

- 1-Tz 1-T 
A = A ( T )  = --In----. 

T2 1+T 
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< 1. The behaviour of A ( T )  is seenin figure 5. 
In an (6, E)-plane (29) represents a circle with centre at  &A and diameter A .  The 
curve represented by (30) is shown in figure 6 (for = 1). When T is small, 
which means large A ,  the two curves must obviously intersect, and two neutral 

We note that A > 0, since 0 < 

-. 
0 

Figure 7. Construction of points on the neutral curve. 

Stable 0 0 8  o 
0 0 0  0 

0 g I > 
0 5 10 

FIGURE 8. The neutral curve in a @, €)-plane, computed from the stability theory. The 
cases run in the numerical integrations are indicated by an open circle (stable) or a solid 
circle (unstable). 
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solutions exist (figure 7). Thelimiting case when the two curves first make contact 
occurs for T = 0.265. It is the largest for which the flow can become unstable, 
and corresponds to a smallest possible flow rate ?j = 1.84. The angular frequency 
of the oscillation is 3.60q. Since the angular frequency of a fluid particle is nij, the 
thermal disturbance thus travels slightly faster than the fluid. 

As the flow rate is increased above the critical value there is one upper and one 
lower value of e for which neutral oscillations occur ; in the range between these 
the solutions are amplified. The curve in the (4 ,  €)-plane representing neutral 
oscillations has been computed graphically, from the construction shown in 
figure 7. The result is shown in figure 8. In  the asymptotic limits the upper and 
lower values of B are 4?j2 and an2, respectively. This result is easily found, noticing 
that the two intersections between the circle and the - 6 cot +6 curve approach 
0, = 277, Z, = A and 9, = 77, d, = n2/A when the radius of the circle gets large, and 
that A itself has the asymptotic expression 4q2. 

The neutral curve constructed corresponds to the first mode, in which the 
temperature disturbance shows one wave along the loop. For larger ij values one 
finds also higher modes with two, three, etc., waves along the loop. These come 
from intersections of the circle with the different branches of the -6cotfrD 
curve. It is easily shown that the corresponding neutral curves all are enclosed 
by the curve for the first mode. 

The present stability problem does not change qualitativelyin the more general 
case where the frictional resistance is a non-linear function of q, as is expected in 
turbulent flows. is, however, now a function of ?j, and this leads to a certain 
distortion in the previous neutral curve. 

5. A numerical experiment 
Studies of the non-linear oscillations were made by numerical integration of 

the equations (9), (10) and ( I l a ,  b).  These integrations were carried out on the 
computer General Electric 225 at the Woods Hole Oceanographic Institution. 
The flow rate q was directly obtained in curve form, by use of a machine plotter, 
while the temperature field was printed only at  certain times by command of the 
operator. The computation over one cycle required about 1 see without printing, 
and about 1 min with printing at  every time step. 

For the integration the loop was divided in 16, or sometimes 32, equal segments, 
each having a uniform temperature. Starting with zero temperature everywhere 
except in the first segment next to the heat source, where the temperature was 
assumed to be 1, the acceleration was computed by use of (9). The time required 
to advect the fluid one segment forward along the loop was then found, keeping 
the acceleration constant, and the temperature pattern was advanced one step. 
The temperature of the fluid segment passing the heat source could be estimated 
from a knowledge of the incoming fluid temperature and the mean flow rate 
over the step, using (I 1 a, b). 

The results of four different runs are shown in figure 9 a-d. In  the first case the 
system is damped and the approach to the steady state is aperiodic. In  the second 
case the system is still stable, but the approach to the steady state is oscillatory. 
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In  the third case we are very close to a neutral oscillation. A slight change in the 
parameter values can change the solution to one that slowly amplifies. The 
amplitude will be limited by non-linear effects and a steady pulsation develops. 
The temperature field over one cycle in a pulsation is shown in figure 10, 
while the variation of the flow rate and the total buoyancy 
figure 11. 

(4 {L , , 
t 

0 5 
P 

$ T dz is shown in 

P 

2 T  

> t  

4 

FIGURE 9. Result of numerical integration in four cases: (a)  a = 0.4, E = 0.2; 
( b )  a = 2.0, B = 1.0; ( c )  a = 20.0, E = 3.0; (d )  a = 40.0, E = 6.0. 

When the instability is made stronger a new phenomenon occurs that is 
exemplified in figure 9d. The non-linear effects cannot limit the pulsations but 
these grow until in one ‘ back-oscillation ’ the flow rate changes sign. The system 
then flips over and pulsations build up around a reversed mean flow, etc. One 
would perhaps expect to see a periodic behaviour develop, but in the numerical 
experiment the oscillations never repeated themselves, even during integration 
over several hundred cycles. 

A similar ‘ergodic’ oscillation has been discussed in a report by Moore & 
Spiegel (1966). In  their case the oscillator was even simpler, consisting of a single 
particle elastically restrained in an unstable surrounding fluid. The oscillations, 
which could be described by a third-order ordinary differential equation, became 
irregular because of the existence of a number of (three-dimensional) limit cycles 
that pass very close to each other at the equilibrium point. Even a small numerical 
error near this point could shift the system into another limit-cycle and in the 
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course of time a large departure would be found. In  the present case there is no 
indication of such a phenomenon. Numerical integrations using different numbers 
of segments have been carried out and compared, and it does not look as if 
numerical errors cause the irregularity. Rather it seems that the explanation 
lies in the large number of degrees of freedom of the system. With a continuous 

1 2 3 4 

/-‘. 

\ “ I  , ’  

5 

, -, 

1-1 - 1.0 to - 0.5 0 to + 0.5 

- 0.5 to 0 + 0.5 to 1.0 

FIGURE 10. Variation in the temperature field over one cycle in an almost 
neutral oscillation (a = 20.0, E = 3.0). 

distribution of temperature along the loop the number of degrees of freedom is, of 
course, infinite. In  the actual integrations the number is finite, proportional to 
division in segments, but this number is so large that any periodic or quasi- 
periodic behaviour may come out only after a very long integration. 

Using the numerical results it is possible to test the prediction of the linear 
stability theory. In  figure 8 points are shown representing the numerical cases 
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in a (4 ,  €)-plane. One sees that the transition from stable to unstable solutions 
occurs near the theoretical neutral curve, but that a certain increase of the 
unstable region is present. This may be an effect of the difference approximation 
and with a more accurate numerical method the agreement could probably be 
improved. 

FIGURE 11. Variation in the total buoyancy ((I) and flow rate ( b )  in the same case as re- 
presented in figure 10. 

6. Physical explanation of the instability 
In  a steady motion one finds viscous and thermal dissipation that seem to 

oppose any change in the flow rate. Any increase in flow rate, for example, would 
cause an increase in friction and a decrease in total buoyancy, because the 
heating/unit length of fluid column is diminished. One may therefore think that 
a steady motion would always be stable. However, these two restraining effects 
may not be in phase and an overshooting can then occur, eventually producing 
growing oscillations. 

In  the present case the mechanism of instability is made clear by figures 10 
and 11. One sees in figure 10 a positive thermal anomaly, or ‘warm pocket ), that 
emanates from the heat source and follows the fluid up along the right branch 
(stages 2-5). It then passes the heat sink (stages 6-7) and can still be traced in the 
fluid running down the left branch. Passing the heat source it again appears 
amplified. In  the opposite position one sees similarly a ‘cold pocket’ that is 
regenerated each time it passes the heat sink. The variation of buoyancy and 
flow rate shown in figure 11 explains this regeneration. As the ‘warm pocket ’ 
comes out from the heat source, positive buoyancy is built up and the flow 
accelerates. When the pocket passes the heat sink the flow rate is maximum 
(stage 6). Thus the effect of the heat sink is minimized. Half a cycle later when the 
‘ warm pocket ’ passes the heat source, the flow rate is minimum and the heating 
can regenerate the anomaly effectively. A similar reasoning holds for the ‘ cold 
pocket ’. One may see the mechanism most simply by considering the fluid as a 
pendulum, with its mass centre towards the ‘ cold pocket ’. The heat source and 
sink will be most effective when the pendulum is in its upper slower motion, and 
less effective when the pendulum is in its lower more rapid motion. 

One also wants to understand why, for a given mean flow rate 4 ,  oscillations 
occur only for a certain range of the friction parameter E, excluding the very 
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small and very large values. We note that, for a fixed ?j, the limits of small and 
large E represent also the limits of small and large values, respectively, of the 
buoyancy parameter a (?j is a function of e/u alone). 

In the limit of large e one finds that the acceleration term in (9) is small, and 
buoyancy and friction balance. The lag between the buoyancy and flow shown in 
figure 11 is no longer present. When the warmest fluid reaches the cold source 
and the buoyancy decreases (stages 5-6) the velocity immediately drops. The 
effectiveness of the instability mechanism discussed earlier is therefore dimin- 
ished. In  the limit of a small E ,  and thus a small a, (9) requires, on the other hand, 
that ?j is almost constant. Thus the fluid has a large inertia. The flow can build up 
slowly under the influence of a steady buoyancy force. However, it will not react 
much to buoyancy variations in one cycle, and again the effectiveness of the 
instability mechanism is diminished. 

The author is indebted to Dr Joseph Keller for valuable discussions on the 
problem. Dr Keller has looked further into the problem of the non-linear oscilla- 
tions, in the limit of small inertia. His investigation is presented in another 
article (Keller 1966). Miss Nancy Lockwood and Mrs Jacqueline Webster kindly 
helped to set up the numerical problem for the computer. The work has been sup- 
ported by the Office of Naval Research through Contract Nonr-2196(00) and 
represents contribution number 1810 from the Woods Hole Oceanographic 
Institution. 
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